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A simple tensorial contraction method has been developed to obtain analytical

formulae for X-ray resonant magnetic scattering. First, the method has been

applied considering electric dipole–dipole and electric quadrupole–quadrupole

scattering in the isolated-atom approximation. The results have been compared

with previous work. The same method has then been extended to non-spherical

systems by deriving new phenomenological formulae.

1. Introduction

X-ray magnetic scattering (XRMS) exhibits enhancement at

resonances corresponding to localized electronic states

(Gibbs, 1988; Carra & Thole, 1994). Because of its coherent

nature, element specificity and polarization dependence,

XRMS can be used to determine both the spatial distribution

and orientation of matter’s magnetization.

To plan experiments and analyse data, there is a strong

necessity for simple analytical formulae that directly relate

the experimental geometry, sample orientation and photon

polarization to the measured scattered intensity. Simple

formulae for XRMS amplitude can be found in the literature

with the spherical-atom approximation (Hill & McMorrow,

1996). They are composed of a sum of terms, each term

being the product of a geometrical expression, containing

polarization vectors, multiplied by energy-dependent

complex-valued functions. In a phenomenological analysis,

where one is interested in separating the different contri-

butions to the spectra, one can take theses functions as free

parameters, under the constraint that dispersion relations

are satisfied.

These simple formulae for the cross section have been

successfully used in the resonant studies of rare-earth

compounds (Detlefs et al., 1997; Perry et al., 1998; Dumesnil et

al., 2000; Stunault et al., 2002; Kim et al., 2005). However,

they cannot account for forbidden reflections arising from the

joint effect of magnetic ordering and local crystal field

(Ovchinnikova & Dmitrienko, 1997, 2000).

In this paper, we derive a simple and understandable

theoretical framework within which we recover previous

XRMS formulae and extend them to non-spherical

systems. As an example, we show that, for basal-plane

spiral holmium, our new expression for the cross section

predicts the existence of extra reflections which are otherwise

forbidden.

2. Introduction to scattering factors

The resonant scattering of a photon described by a wavevector

k and polarization """ can be written in terms of electric dipole

and quadrupole interactions, disregarding the spin–magnetic

field interaction (Blume, 1994):

F"""k!"""0k0 ¼
m

h-

X
n

!2
nh0jð"""

0 � r� i
2 k0 � r""" � rÞjnihnjð""" � rþ i

2 k � r""" � rÞj0i

!� !n þ i�
;

ð1Þ

where hnj is a complete set of eigenstates of matter, h0j being

the initial state, and h- !n is the energy difference between hnj

and h0j.

As the atoms are going to be described as spherical entities

plus some kind of distortion, one can consider the spherical

group and how the angular part of the different terms of

equation (1) decomposes on the irreducible representations of

such a group. The scalar product """ � r can be rewritten as a sum

of products of rank 1 spherical harmonic tensor components:

""" � r ¼
Pq¼þ1

q¼�1

"1�
q r1

q; ð2Þ

where, given a Cartesian vector A, its spherical tensor

components are

A1
0 ¼ Az

A1
1 ¼ �ðAx þ iAyÞ=21=2

A1
�1 ¼ ðAx � iAyÞ=21=2:

ð3Þ

The product ðk � rÞð""" � rÞ can be written as follows:

ðk � rÞð""" � rÞ ¼ 1
3 ðk � """Þðr � rÞ þ

Pq¼þ2

q¼�2

ðk"Þ�qðrrÞq; ð4Þ



where, given two Cartesian vectors A and B, the symbols

ðABÞq denote the rank 2 spherical symmetric tensor compo-

nents of their products, which are:

ðABÞ0 ¼
1

61=2
ð2AzBz � AxBx � AyByÞ

ðABÞ�1 ¼ �
1
2 ½AxBz þ AzBx � iðAyBz þ AzByÞ�

ðABÞ�2 ¼
1
2 ½AxBx � AyBy � iðAxBy þ AyBxÞ�:

ð5Þ

According to equation (4), spherical tensorial components of

the tensor product k� """ are coupled to the same rank

components of the product r� r to form a scalar. As the

product r� r has no antisymmetric component, the rank 1

components of the product k� """ do not appear in equation

(4).

The transformations of equations (2) and (5) are used to

simplify the scattering-factor expression by choosing the

angular moment quantization axis in the most appropriate

way.

In the next section, a spherical system is treated as being

perturbed by a magnetic exchange interaction. In x4, a non-

spherical perturbation term is considered and a phenomen-

ological expression is derived for the magnetic scattering

amplitude. We consider the case of holmium as an example.

For such a system, the deviation from spherical symmetry

contains both a parity even and a parity odd term. We find that

the former gives a correction to the dipole–dipole (E1–E1)

and quadrupole–quadrupole (E2–E2) scattering amplitudes.

That correction merges with the spherical symmetry formulae

while the parity odd term gives rise to dipole–quadrupole

(E1–E2) Bragg peaks which are otherwise forbidden.

3. Derivation of formulae for the spherical case with a
magnetic field perturbation

For a spherical atom perturbed by a magnetic exchange field,

the final scattering amplitude expression does not mix dipolar

with quadrupolar terms because of parity conservation. We

take the angular moment quantization axis n̂n along the

magnetic field. Terms having different quantization number q

will not mix. The expression for the scattering amplitudes then

assumes the following simple form:

F"""k!"""0k0 ¼
3

2k

Xq¼1

q¼�1

F1;q"
1�
q "

1
q þ

5

k

Xq¼2

q¼�2

F2;qðk"Þ
�

qðk"Þq; ð6Þ

where the prefactors are non-essential but correspond to the

definitions used by Hill & McMorrow (1996).

In the spherically symmetric case with no magnetic field, the

F1;q and F2;q are independent of q. The introduction of a

magnetic field introduces a q dependence in the scattering

factors that can be expanded as a polynomial in the quanti-

zation number q:

F1;q ¼ F00
1 þ qF10

1 þ q2F20
1

F2;q ¼ F00
2 þ qF10

2 þ q2F20
2 þ q3F30

2 þ q4F40
2 ;

ð7Þ

where the coefficients are given by

F00
1 ¼ F1;0

F10
1 ¼ ðF1;1 � F1;�1Þ=2

F20
1 ¼ ð2F1;0 � F1;1 � F1;�1Þ=2

F00
2 ¼ F2;0

F10
2 ¼ ðF2;�2 � F2;2 þ 8F2;1 � 8F2;�1Þ=12

F20
2 ¼ ð16F2;1 þ 16F2;�1 � F2;�2 � F2;2 � 30F2;0Þ=24

F30
2 ¼ ðF2;2 � F2;�2 þ 2F2;�1 � 2F2;1Þ=12

F40
2 ¼ ð6F2;0 þ F2;2 þ F2;�2 � 4F2;1 � 4F2;�1Þ=24:

ð8Þ

In the non-magnetic case, all the terms are zero except the

zero-order ones.

We can substitute q in equation (6) by n̂n � L, where L is the

angular moment operator. Going back to the Cartesian space,

equation (6) is then written as

F"""k!"""0k0 ¼
3

2k
C """0

Xn¼2

n¼0

ðin̂n�ÞnF 0n1 """

 !

þ
5

k
C k0 � """0

Xn¼4

n¼0

ðin̂n�ÞnF 0n2 k� """

 !�
2; ð9Þ

where the symbol C means the sum of all possible contractions

of the two vectors """0 and k0 with the expression to their right.

A contraction is realized by coupling in pairs the 2N vectors

that enter the expression, where 2N is the sum of the rank of

each tensor. Each vector couple is then contracted to give a

scalar product. The N scalar products are multiplied together

to give the final result. The contraction of a tensor of defined

rank with itself is not considered here. The dipolar scattering

amplitude becomes

F
dipolar

"""k!"""0k0 ¼
3

2k
½"""0 � """F 001 þ """

0
� ðin̂n� """ÞF 011 þ """

0
� ðin̂n� in̂n� """ÞF 021 �:

ð10Þ

Such a formula can be rearranged in the same form as that

presented by Hill & McMorrow (1996):

F
dipolar

"""k!"""0k0 ¼
3

2k
½"""0 � """ðF 001 � F 021 Þ � in̂n � ð"""0 � """ÞF 011 þ ð"""

0
� n̂nÞð""" � n̂nÞF 021 �:

ð11Þ

For the quadrupolar scattering amplitude, the same pro-

cedures apply with some more bookkeeping for the various

terms. In detail:

ðin̂n�Þ0"""� k ¼ """� k

ðin̂n�Þ1"""� k ¼ iðn̂n� """Þ � kþ i"""� ðn̂n� kÞ

�ðn̂n�Þ2"""� k ¼ """? � k� 2ðn̂n� """Þ � ðn̂n� kÞ þ """� k?

�iðn̂n�Þ3"""� k ¼ iðn̂n� """Þ � kþ 3i"""? � ðn̂n� kÞ

þ 3iðn̂n� """Þ � k? þ iðn̂n� kÞ � """

ðn̂n�Þ4"""� k ¼ """? � k� 8ðn̂n� """Þ � ðn̂n� kÞ

þ 6"""? � k? þ k? � ": ð12Þ
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Each term of the above equation must be multiplied by its

own F
0q
2 and contracted with "0k0. The result is

k

5
F

quadrupolar

"""k!"""0k0 ¼ ðF
00
2 þ 2F 022 þ 8F 022 ÞSð"""

0
� """k0 � kÞ=4

þ ið�F 012 � 4F 032 ÞSðz � ð"""
0 � """Þk0 � kÞ=2

þ ð�F 022 � 7F 042 ÞSð"""
0
� z""" � zk0 � kÞ=2

þ ð�2F 022 � 8F 042 ÞSðz � ð"""
0 � """Þz � ðk0 � kÞÞ=4

þ 3iF 032 Sð"""0 � z""" � zz � ðk0 � kÞÞ=2

þ 6F 042 """
0
� z""" � zk0 � zk � z; ð13Þ

where SðtÞ represents the symmetrized expression composed

of the term t as well as the other three terms which

can be obtained by swapping """0 with k0 and/or """ with k. We

have verified that with some lengthy vector algebra our

formulae can be recast in the form given by Hill & McMorrow

(1996).

4. Non-spherical case

In this section, we develop a phenomenological formalism for

XRMS in the non-spherical case. Our starting point is crystal-

field theory where the non-sphericity of the atomic environ-

ment is represented by a one-particle mean-field potential

added to the atomic Hamiltonian. Such an approach,

pioneered by the works of Bequerel (1929), Bethe (1929),

Kramers (1930) and Van Vleck (1932), was applied for the first

time for the calculation of X-ray absorption spectra and

scattering factors by van der Laan (1991) and Carra & Thole

(1994).

The crystal field T is given by a superposition of spherical

tensors:

T ¼
P
l;q

tl;qTl
q: ð14Þ

The tensor T must be invariant under all operations of the

point symmetry group of the system (Carra & Thole, 1994).

The crystal-field correction to the scattering amplitude is

treated in a perturbative way in one-particle approximation.

We consider here the process where an electron is promoted

from a closed-shell state, denoted by jnglg
1
2 ; Ja jzi, to the

intermediate states jnalamazij
1
2 �i and jnblbmbzij

1
2 �i of two

open shells ðna; laÞ and ðnb; lbÞ. The perturbation T has matrix

elements that mix the two shells.

If some non-essential labels are disregarded, the initial one-

electron state can be written as follows:

jJa jzi ¼
P
�

cð jz; �Þj�ijlg; jz � �i; ð15Þ

where cð jz; �Þ stands for the Clebsch–Gordan coefficient

cðlg; jz � �; 1=2; �; Ja; jzÞ.

The electron–photon interaction is represented by the

tensors P0 ¼ Pð"""0; k0Þ for the outgoing photon and P for the

incoming one.

The scattering amplitude at first order in T takes the formP
mgz

P
�

c2
ðmgzþ�;�Þ

P
qq0
hlg;mgzjP

0�
b jlb;mgz þ q0ifbðmgzþq0;�Þ

� hlb;mgz þ q0jTjla;mgz þ qi

� faðmgzþq;�Þhla;mgz þ qjPajlg;mgzi þ ½a$ b�: ð16Þ

In this expression, the factor fbðm; �Þ, or faðm; �Þ, implicitly

contains the electron propagator for the spherical atom and

accounts also for the orbital occupancies.

Starting from this expression, a contracted form can be

derived. In addition to the polarization vectors and the

magnetization axis already present in the spherical case, it

contains the T tensor expression representing the crystal

field and the spherical tensors T
lg
mz

representing the core

state.

The perturbative process concerns intermediate levels of

well defined angular momenta, la and lb. This imposes a

restriction on the possible contractions: the transition due to

a P tensor from the L ¼ lg ground state to the L ¼ ln

excited levels implies that exactly ½lg þ rankðPÞ � ln�=2

contractions must be done between the tensor and the initial

ground state. Our one-particle approximation neglects the

energy spread of the intermediate states due to many-body

effects and is therefore similar to the fast-collision

approximation employed by Marri & Carra (2004) for the

case of E1–E2 scattering in a magnetoelectric crystal.

Moreover, as the fbðm; �Þ or faðm; �Þ propagators are diag-

onal in m and �, our approach neglects spin–orbit (SO)

interaction in the intermediate levels.

One can develop faðq; �Þ and fbðq; �Þ in powers of Lz, as in

the previous section:

f ðq; �Þ ¼
P

n

fn;�qn !
P

n

fn;�Ln
z : ð17Þ

The scattering amplitude can then be written as follows:P
mgz;�;na;nb

f b
nb;�

f a
na;�

c2
ðmgzþ�;�Þ

� CðT
lg�
mz

P0�b j
 
ði�m�Þ

nb T
lg
mz
ði�m�Þ

na Paj
!T

lg
mz
Þ þ symm:;

ð18Þ

where the above expression is symmetrized by the following

substitutions:

symm. ¼ ½a$ b�:

The symbol j (j!) which follows a polarization tensor

implies that the number of contractions of such a tensor

with the preceding (following) ground-level tensorial

object is constrained as discussed above. The ði�m�Þ operator

acts on all the objects to its right. Note that

ði�m�ÞAB ¼ ½ði�m�ÞA�Bþ A½ði�m�ÞB�. A formal derivation

of these contraction rules is given in Appendix A.

In general, for any edge e, the factors c2 can be expressed as:

c2ðmz þ �; �Þ ¼ le þ 2se�mz, where le and se are constants that

depend on the edge. For example, at the L3 edge, we have

le ¼ 2=3 and se ¼ 1=3 while, at the L2 edge, le ¼ 1=3 and

se ¼ �1=6.
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It is then useful to rewrite equation (18) as:

le

P
na;nb

2
3 ðf

b
nb;1=2f a

na;1=2 þ f b
nb;�1=2f a

na;�1=2Þ

�
P
mgz

CðT
lg�
mz

P0�b j
 
ði�m�Þ

nb T
lg
mz
ði�m�Þ

na Paj
!T

lg
mz
Þ

þ se

P
na;nb

1
3 ðf

b
nb;1=2f a

na;1=2 � f b
nb;�1=2f a

na;�1=2Þ

�
P
mgz

CðT
lg�
mz

P0�b j
 
ði�m�Þ

nb T
lg
mz
ði�m�Þ

na Paj
!
ði�m�ÞT

lg
mz
Þ

þ symm. ð19Þ

In the second term, the mz quantization number has been

converted into the operator ði�m�Þ placed to the left of the

core-hole orbitals, T
lg
mz

. Once contracted, the above formula

generally remains a complicated expression. However, for the

zero- and first-order terms in ði�m�Þ, the sum over the core-

hole orbitals can be simplified in an elegant way.

The zero-order terms describe the non-sphericity of the

crystal field. The first-order terms describe corrections

induced by the crystal field to the magnetic scattering.

Concerning the zero-order terms, one can observe that such

a sum looks like a trace. In other words, if, in a given

contraction diagram, a vector A is contracted with the ket

ground orbital while another vector B is contracted with the

same bra core orbital, the result is equivalent to a contraction

of A with B because the sum runs over a complete basis of an

irreducible subspace.

For the first-order terms, ði�m�Þ operates either on the core-

hole orbital or on the intermediate tensors (P, P0 and crystal-

field tensor T). The terms where ði�m�Þ operates on the

intermediate tensors can be simplified, as in the zero-order

case described above.

Now we consider the terms where one ði�m�Þ operates on

the core-hole orbital. The contraction diagrams arising from

these terms can be split into two classes. In the first class,

ði�m�Þ operates on a core-hole vector and the result is

contracted with another core-hole vector. This class gives zero

contribution because ði�m�Þ is an antisymmetric operator. The

second class is given by the remaining terms containing the

factor v � ½ði�m�Þh�, where v and h are vectors that enter the

composition of an intermediate and core-hole tensors,

respectively. This factor can be rewritten as �½ði�m�Þv� � h and

once again the sum over the core-hole orbitals disappears

from the final expression.

The general expression for the scattering amplitude up to

first order in ði�m�Þ is therefore

Pnaþnb¼1

na;nb¼0

ana;nb
CðP0�b ði�m�Þ

nb T
lg
mz
ði�m�Þ

na PaÞ þ symm.; ð20Þ

where the ana;nb
depends linearly on the f electron propaga-

tors. The exact linearity coefficients can be found by working

out the contraction diagrams.

For higher-order terms, this simplification is not applicable

in the same way. Indeed, when one rewrites v � ½ði�m�Þ
2h� as

½ði�m�Þ
2v� � h, the ði�m�Þ

2 operator cannot be factored out

from the tensor composed of v. In fact,

ði�m�Þ
2
ðv1v2Þ 6¼ ½ði�m�Þ

2v1�v2 þ v1½ði�m�Þ
2v2�: ð21Þ

The core orbital disappears from the final expression because,

in our approximation, our L3 core state in equation (15) is not

coupled to the valence orbitals. Such an approximation is valid

for the hard X-rays domain where the core hole is deep.

It is interesting to compare our method to the one estab-

lished by Ovchinnikova & Dmitrienko (1997, 2000). These

authors write a general form for the dielectric tensor and then,

by symmetry considerations, they restrict their formulae to the

terms that have the right invariance properties. In our method,

it is the mechanism of the contraction method that ensures

that the final expression has the correct symmetry.

For the sake of simplicity, only the contribution from the

zero- and first-order terms is considered in the following

example. The general case can be treated with a recently

developed computer code (Wood & Mirone, 2006).

5. Example: a case study of holmium

Our method is illustrated here choosing holmium as an

example of a non-centrosymmetric system. Holmium has a

h.c.p. structure where the atoms are embedded in a local D3h

symmetry environment. It is a basal-plane spiral antiferro-

magnet, where the moments are confined to the ab plane in

ferromagnetic sheets. The magnetization direction rotates

from basal plane to basal plane, creating a spiral structure

propagating along the c axis. The modulation vector lies along

(00l). Taking a Cartesian x; y; z frame with x along the h.c.p.

a axis, we get

T ¼ t2½3z2
� ðx2

þ y2
þ z2
Þ� � t3ðx

3
� 3xy2

Þ þ . . . ; ð22Þ

where the first omitted term of the series is a rank 4 compo-

nent. The � signs alternate from one ab plane to another.

The contribution from the ð2z2 � x2 � y2Þ term is centro-

symmetric. The E1–E1 and the E2–E2 scattering are treated

separately. Within the framework of our assumption [equation

(20)], we find that the E1–E1 scattering correction is propor-

tional to

3"""0 � zði�̂m�m � """Þ � z� """
0 � ði�̂m�m"""Þ � ½"""

0 $ """�: ð23Þ

The second term of this expression merges with the form

obtained for the scattering in the spherical approximation

[equation (11)]. However, the first term contains two scalar

products with the z axis and adds complexity to the experi-

mental geometry dependence of the amplitude.

Disregarding those terms that can be merged with the

spherical formulae, the E2–E2 scattering has the form

ðk0 � ẑzÞðk � ẑzÞ"""0 � ði�̂�m � """Þ þ ½i�̂� � """$ k� þ ½k$ """�

þ ½½k0 $ """0�� � ½k; """$ k0; """0�: ð24Þ

This expression also contains two scalar products with the z

axis, again adding some complexity.

In our system, the E1–E1 and E2–E2 terms contribute to

the amplitude of the 2n� q Bragg-order diffraction peaks,

where n is an integer and q is the modulation vector. In an

experiment where several magnetic peaks are measured, the
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incidence angle may considerably vary from one order to the

next. Consequently, one might think that the inclusion of our

correction could improve the agreement between experiment

and theory.

However we found that, by fully developing equations (23)

and (24), the centrosymmetric part has the same polarization

dependence as the spherical contributions, when the in-plane

magnetization turns about the z (c) axis. This may explain why

these non-spherical contributions have not been detected so

far in studies of l ¼ 2n� q Bragg reflections.

The scattering-factor contribution from the alternating term

�ðx3 � 3xy2Þ gives diffraction peaks at l ¼ 2nþ 1�mq,

where m is an integer. For simplicity, we consider the

magnetization to be in the xy plane and the terms having

na ¼ 1 and nb ¼ 0 in equation (20).

We apply the contraction rules to formula (20), where P0

and P are """ and k� """ tensors, respectively. In this case, we

obtain a scattering amplitude proportional to

� 6ið"""0 � x̂xÞð""" � x̂xÞn̂nm � ðx̂x� kÞ þ 6ið"""0 � x̂xÞð""" � ŷyÞn̂nm � ðŷy� kÞ

þ 6ið"""0 � ŷyÞð""" � x̂xÞn̂nm � ðŷy� kÞ þ 6ið"""0 � ŷyÞð""" � ŷyÞn̂nm � ðx̂x� kÞ

þ ½"""$ k� þ ½k$ k0; """$ """0�: ð25Þ

For 00l diffraction, we have k0 � ẑz ¼ �k � ẑz. After symme-

trization and considering linear polarization, only the � � �
terms survive in the above expression, where � lies in the

scattering plane and � is perpendicular to it. Decomposing the

incoming and outgoing wave into � and � components and

entering them into equation (25), we obtain for the E1–E2

scattering-amplitude matrix:

F
dq
�0 � F

dq
�0 �

F
dq
�0 � F

dq
�0 �

 !

¼ 6if
0 cos2ð�Þ cosðq � rþ 2�Þ

cos2ð�Þ cosðq � rþ 2�Þ 0

� �
;

ð26Þ

where f is an energy-dependent factor, � is the Bragg angle

and � is the azimuthal angle between the scattering plane and

the x axis. We have also considered the case of na ¼ 0 and

nb ¼ 1 and found the same form. For an in-plane rotating

magnetic field, the scattering amplitude for the 2nþ 1þ q

reflections is proportional to the expðiq � rÞ component in

equation (26) and only exists in � � �. The azimuthal angle

only influences the phase. Consequently, the E1–E2 magnetic

intensity is independent of the azimuth for terms up to first

order. The E1–E2 scattering would also contribute to the

l ¼ 2nþ 1�mq with m> 1 but such a scattering is due to the

higher-order terms (na þ nb > 1) and is not treated here. The

zero-order term only contributes to the l ¼ 2nþ 1 peaks

which have a sixfold azimuthal dependence. To our knowl-

edge, no l ¼ 2nþ 1�mq or l ¼ 2nþ 1 peak has been

observed so far in heavy rare-earth metals, except a pre-

liminary experimental study of holmium which has detected

the (003) peak and its �q satellites (Bouchenoire et al., 2007).

6. Conclusions

We have established a contraction method and obtained

phenomenological analytical expressions for the scattering

factors. These factors have been expressed in terms of scalar

and vector products of the polarization, the magnetization axis

and of the vectors defining the crystal field tensor. Using

a perturbative approach, we have been able to go beyond

the usual SO2 approximation (Hill & McMorrow, 1996) by

simultaneously considering the magnetization and a general

crystal-field tensor. Our method is a viable diagrammatic

technique based on contraction between vectors. With our

method, useful formulae can be directly obtained in terms of

polarization, crystal-field vectors and magnetization direction.

Our formalism accounts for the SO coupling of the core-hole

electron. In the intermediate levels, we have considered

propagators which are diagonal in m; �. The introduction of

diagonal propagators in the formalism would mix orbital and

spin degrees of freedom. We recognize that it would be

possible, in this case, to generalize the method by writing the

vectors as symmetric products of spinor couples and by

operating contractions between spinors instead of between

vectors. Our method can be considered a bottom-up alter-

native to the one developed by Ovchinnikova & Dmitrienko

(1997, 2000). In fact, these authors trace down the polarization

dependence from a general expression, using symmetry

considerations to restrict the possible terms of the dielectric

tensor. Our method, instead, expresses first the local non-

sphericity by a sum of spherical-harmonic tensors and then the

contraction mechanism automatically builds up formulae with

the correct dependence. In agreement with these authors, we

also find that the joint effect of local non-sphericity and

magnetization gives rise to reflections otherwise forbidden.

Our treatment is illustrated with the case of holmium, which

predicts E1–E2 peaks occurring at 2nþ 1þmq reflections.

APPENDIX A
Derivation of contraction rules

The transition amplitude between different atomic levels is in

general the product of radial integrals with a spherical integral

of a product of spherical harmonic functions. The angular

dependence is given by the angular integral while the product

of the radial integrals acts like a constant. A spherical

harmonic of given rank l can be written as a sum of terms f ðnÞ

given by

f ðnÞ ¼
Qi¼l

i¼1

ai � n; ð27Þ

where n denotes the position on the unit sphere surface and

l ¼ 2N is the sum of the rank of each spherical harmonic (an

even number for a non-zero integral). The product of all the

spherical harmonics entering the radial integral is then equal

to the sum of terms having f ðnÞ form.

We show in this section how such angular integration over

the unit sphere surface can be expressed as a sum of

contraction diagrams.
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The polynomial integration considered here is

R
S

Q2N

i

ai � n

� �
dn2: ð28Þ

By multiplying and dividing this expression byR
expð�r2Þr2Nþ2 dr, it can be transformed into an integral over

the whole space:Z
S

�Y2N

i

ai � n

�
dn2

¼
1

4�

Z �Y2N

i

ai � r

�
expð�r2

Þ dr3=½�ðN þ 3=2Þ=2�

¼
1

4�

Y2N

i

ai � @@v

�Z
expð�r2 þ v � rÞ dr3

�����
v¼0

�
½�ðN þ 3=2Þ=2�

¼
Y2N

i

ai � @@v expðv2=4Þjv¼0�ð3=2Þ=�ðN þ 3=2Þ: ð29Þ

In this expression, only the terms fully contracted remain.

Indeed, when v ¼ 0, if al � @@v takes down a v=2 factor from the

exponent, another am � @@v must be used to derive this factor to

obtain al � am. Otherwise a zero contribution is obtained.

The intermediate sum that appears in equation (16) can be

considered as a projector pla
over a tensorial space of definite

rank la. The projection over definite rank space is obtained

through the j and j! constraint. When applying contraction

rules to expressions formed by tensors of a defined rank, one

must bear in mind that, by definition, a defined rank tensor

gives zero when contracted with itself.

We are indebted to Sergio di Matteo for fruitful and inter-

esting discussions, and for sharing with us his theoretical views

and his experience. We thank Efim Kats, from the ILL theory

group, and Francois de Bergevin for a helpful critical reading

of the manuscript.
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